CRDM Meeting Slides Non-Proprietary Version

babcock & wilcox nuclear energy, inc.

nuclear energy

B&W mPower™Reactor

Control Rod Drive Mechanism Design and Testing

March 23, 2011 – USNRC, Rockville, MD

© THE BABCOCK & WILCOX COMPANY. ALL RIGHTS RESERVED

AGENDA

- OBJECTIVES
- INTRODUCTIONS
- REACTOR DESIGN OVERVIEW
- CRDM DESIGN OVERVIEW
- CRDM TESTING PROGRAM
- CONCLUSIONS

Reactor Design Overview

Overview of the B&W mPower Reactor Design

High-Level Requirements

- 125 MWe plant net output per module & 60-year plant life
- NSSS forging diameter allows domestic forgings, unrestricted rail shipment
- Passive safety requirements emergency (diesel) power is not required
 - Minimize primary coolant penetrations, maximize elevation of penetrations
 - Large reactor coolant inventory
 - Low core power density
- Standard fuel (less than 5% enriched U-235)
- Long fuel cycle, 4+ year core life

High-Level Requirements-Cont.

- Spent fuel storage on site for life of plant
- No soluble boron in primary system for normal reactivity control
- Conventional / off-the-shelf balance of plant systems and components
- Accommodate air-cooled condensers (Baseline) as well as water-cooled condensers
- Flexible grid interface (50 Hz or 60Hz)
- Digital instrumentation and controls compliant with NRC regulations

Containment Requirements

- Underground containment and fuel storage buildings
 - Favorable seismic response
 - Missile protection
- Environment suitable for human occupancy during normal operation
- Simultaneous refueling and NSSS equipment inspections
- Volume sufficient to limit internal pressure for all design basis accidents

Site Development

Technology Overview

Integral Nuclear Steam Supply System

- Integrates core, steam generator, and pressurizer into a single vessel
- Control rod drive mechanisms (CRDMs) and primary coolant pumps inside vessel
- Reactor coolant pressure boundary penetration size and location minimize coolant loss during LOCA – core remains covered throughout the design basis LOCA
- Housed within a steel lined, reinforced concrete, dry containment

Integral design reduces overall plant complexity and enhances safety

Inherent Safety Features

- Large reactor coolant volume
 - Large RCS volume
 - · More coolant to protect the core
- Small penetrations at high elevation
 - High penetration locations
 - Small penetrations

Balance of Plant Design

- Plant designed to produce a nominal 125 MWe
 - Air-cooled condenser (Baseline)
 - Water-cooled condenser
- Conventional steam cycle equipment (small, easy to maintain and replace)
- BOP operation not credited for design basis accidents
 - All fuel can be cooled for a minimum of 72 hours without any BOP system

Instrumentation and Controls

- State of the art digital system
- Provides monitoring, control, and protection functions
- Separate safety and non-safety systems
- Implement lessons learned from current licensing activities
- Northrop Grumman under contract to develop I&C architecture

Summary

- NSSS utilizes an integral PWR design
 - Uses a single integral economizer once through steam generator to produce superheated steam
 - Internal reactor coolant pumps and control rod drive mechanisms
 - Internal pressurizer
- Passive safety systems, inherent NSSS safety features
- Long operating cycle
- Underground containment
- Spent fuel storage on site for life of plant
- Reactor plants for multiple module designs

V.

CCI per Affidavit 4(a) – 4(d)]